Name:	Date:
· (41110:	

Meiosis: Stop the Process Notes

Chapter 14, Section 5, The Cell and Inheritance, p. 546-550.

Directions: read the prompt, and then read the specified passage. Use the passage to help you answer the prompt, recording your answer in the appropriate box.

Read to the bottom of page 546.

1. What did Walter Sutton believe was the key to understanding how offspring have traits similar to their parents?

Read to "Genes on Chromosomes," page 547.

- 2. Describe two observations Sutton made regarding grasshopper sex cells.
 - •
 - •

Read to the bottom of page 547.

3. What is the **chromosome theory of inheritance**?

Read to "What Happens During Meiosis," page 548.

4. What is meiosis?

Read to the bottom of page 548.

5. As a result of meiosis, the final cells have _____ as many chromosomes as the parent cell.

Fill in the number of chromosomes that would result from meiosis in each of the parent cells:

Parent Cells Chromosomes	after Meiosis Chromosomes
4	
46 (human)	
24 (grasshopper)	

Read the first paragraph of page 549.

A Punnett Square is chart that shows all the possible combinations of alleles that can result from a genetic cross (sperm + egg).

6. A Punnett Square is a shorthand way to show events that occur during

Possible sperm cells Possible egg cells Tt Tt Tt Female parent Tt Tt Tt

Read to the bottom of page 549.

7. If the male parent cell is Tt, what chromosome alleles could the sperm cells possibly have?

Read the first sentence on page 550.

8. How many TOTAL chromosomes do human body cells contain?

Read the first paragraph on page 550.

9. How are the genes lined up in a pair of chromosomes?

Read to the bottom of page 550.

10. Why is it important that sex cells have *half* the number of chromosomes as body cells?

Look back at Figure 28, on pages 548-549. For each of the following events, give each a **label** (Beginning, Meiosis I, Meiosis II, and End), draw a **picture** showing what the cell(s) look like at that particular stage, and put them in chronological (**number**) order.

Label:#	Label:#
Event: The chromosomes move to the center of the cell. The centromeres separate and single chromatids move to opposite ends. Picture:	Event: Two cells form, each with half the number of chromosomes. Each chromosome still has two chromatids. Picture:
Event: Four sex cells form with half the number of chromosomes as the parent cell. Picture:	Event: The chromosomes are copied. Picture: